Molding the Plastic Brain: Nanoplastics in the Age of Climate Change

Alex Kaye

Illustrations by Iris Li

By the time you finish reading this sentence, around 100,000 plastic water bottles will have been purchased across the globe [1]. Let’s follow one of these bottles: once used, it is tossed into a trash bin and taken to a landfill, where heavy rainfall carries it off into a nearby stream before ferrying it into the ocean [2]. From here, ocean currents deposit it into an oceanic garbage patch — in this case, the Great Pacific Garbage Patch [3, 4]. While floating in this 1,600,000 cubic kilometer garbage patch, solar radiation and the physical forces of the tides cause the bottle to slowly break apart into millions of microscopic pieces of plastic called microplastics [5]. These pieces continue to degrade down to the nanoscopic scale, where they will appropriately be called nanoplastics. The size of one nanoplastic compared to a plastic bottle is akin to a single grain of sand in an Olympic-sized swimming pool [5]. It is hard to grasp this scale — one bottle cap could break down into one hundred quadrillion (100,000,000,000,000,000) nanoplastics, a quantity similar to the number of pennies you would need to pay off the total global debt [5, 6]. Though plastics degrade into smaller pieces, a reduction in size does not mean a reduction in harm; due to their minuscule size, nanoplastics have unique properties that pose an active threat to organisms [7, 8, 9]. While the health effects of nanoplastics are still being studied, the landscape of research over the past few years has painted a stark image: nanoplastics are filling the stomachs, brains, and cells of countless animals, causing tissue damage, abnormal behaviors, and a reduced ability to adjust to rapidly changing environmental conditions [10, 11, 12].

Meet the Plastics: Nanoplastics in the Food Chain

So, what happens to these plastics? Plastic is often referred to as a ‘forever chemical’ because it takes hundreds of years to chemically transform into naturally occurring molecules, such as carbon dioxide [7]. Across oceanic garbage patches, most plastics float at the surface of the water. As they break apart, they often sink to the bottom of the ocean like a noxious snowfall [13]. Microscopic organisms called zooplankton mistake these nanoplastics for food and consume them, and because most animals cannot digest nanoplastics, plastic slowly accumulates inside their bodies [13, 14, 15]. When fish and other predators consume nanoplastic-filled zooplankton, they ingest a highly concentrated reservoir of plastic; nanoplastics are funneled into the fish, accumulating in their cells, tissues, and bodily fluids [13, 14, 16]. As these fish are eaten by even larger fish, the concentration of nanoplastics inside the larger fish increases exponentially [13, 17, 18]. Plastic pollution turns food chains into a plastic pyramid scheme, with those at the top of the pyramid carrying a disproportionately large share of plastics [13]. It is worth noting that humans are at the top of this pyramid — on average, we consume up to one credit card worth of plastic every week [19, 20]. Not even someone with a vegetarian diet and a strong water filter can avoid nanoplastic ingestion; nanoplastics are able to infiltrate plants, ensuring that all organisms are doomed to a life full of plastic [21, 22, 23].

“Toxic” ft. Britney Spears & Nanoplastics: Inflammatory Effects of Nanoplastics

Once inside the body, nanoplastics exhibit a litany of toxic effects: they damage cell membranes, provoke inflammation, and cause genetic damage [10, 24, 25]. All cells are surrounded by a protective membrane that allows vital nutrients to enter and keeps harmful substances out [24]. Nanoplastics can stick to these membranes, physically deforming them and encouraging the entry of nanoplastics into the cell [24]. Nanoplastics may even be able to embed themselves inside cell membranes, blocking the passage of important molecules into and out of the cell [25]. The deformation and blockage of cell membranes prevents the cell from carrying out essential functions — such as the movement of materials across membranes — decreasing the cell’s ability to survive and potentially causing cell death [25]. Furthermore, the physical structure of nanoplastics allows them to slip through the cell membrane with ease, granting them access to critical parts of the cell, such as mitochondria, the structures that provide the cell with energy [26, 27]. Nanoplastics have a propensity to accumulate inside mitochondria, where they cause damage and stress, disrupt energy production, and produce molecules called reactive oxygen species [28, 29, 30]. Reactive oxygen species (ROS) can cause further damage to the cell by initiating harmful chemical reactions [26, 31].

The immune system is swift, decisive, and bold, providing the body with strong defenses that protect it from infections and harmful substances. Such boldness typically serves the body well, but in some cases, activation of the immune system can cause more harm than good [32, 33, 34]. The body’s immune cells are capable of recognizing ROS and can respond aggressively, resulting in a cascade of immune responses that causes destruction and widespread health effects [26, 35, 36]. ROS production causes inflammation, which — when coupled with chemical energy reserves that have been depleted due to the damaged mitochondria — results in increased numbers of senescent cells [37]. Senescent cells are cells that have reached the end of their life span but do not actually die. Instead, senescent cells stick around, becoming dysfunctional and continuously secreting molecules that further provoke the immune system and lead to a vicious cycle of inflammatory damage [37, 38, 39].

One Fish, Two Fish, Dead Fish, Rude Fish: Neuroplastic Adaptation in a Changing World

The term ‘plastic’ refers to something highly malleable and easily shaped. Much like the plastic straws and water bottles we use in everyday life, the brain is also easily remolded. Neuroplasticity — the ability of the brain and body to dynamically adapt to the world around it through the rewiring of neural connections — is key to an organism’s resilience [40, 41, 42]. Think of a pool party on a warm summer day: though seemingly innocuous, you may need to fan yourself off to prevent overheating or dodge unruly partygoers to avoid being thrown into the pool. You were not born with these pool party survival skills, but instead learned them at some point in your life. If this ability to learn from the environment had been inhibited, the summer heat would be a lot more brutal, and pool parties a lot less fun. [43, 44, 45]. Nanoplastics cause inflammation and cellular damage that may interfere with our ability to learn and respond to the outside world. Because of their small size, nanoplastics can easily infiltrate the brain, where they damage neurons and increase inflammation [8, 11, 46]. This type of damage frequently occurs in the hippocampus, a structure of the brain involved in memory consolidation and learning [47]. Nanoplastics can also disrupt cell growth and cause mitochondrial dysfunction, impairing the production of new neurons in the hippocampus [26, 48, 49]. Hippocampal function is a critical component of neuroplasticity, making damage to this part of the brain particularly disruptive to animal behavior [48, 50].

Nanoplastics have also been shown to modify the production and recognition of molecules related to learning and memory, which are both critical to an organism’s ability to adjust to changing environments [51, 52, 53]. Nanoplastics can inhibit molecules that break down acetylcholine (ACh) — a neurotransmitter important in learning, memory, and muscle movement — and their presence is correlated with an excess of acetylcholine levels in muscles and the brain [11, 54, 55, 56, 57]. Altered ACh levels may explain some of the behavioral and locomotor abnormalities observed in organisms exposed to nanoplastics, such as impaired swimming in fish and hyperactivity in roundworms [8, 9, 58]. Moreover, the molecule that breaks down ACh is itself important for the brain’s ability to rewire itself — this molecule has been shown to promote the formation of connections between neurons [57, 59, 60]. However, ACh is just one small piece of the puzzle. Nanoplastics have been shown to impact levels of a variety of other neurotransmitters central to learning and memory [52]. Untangling the causes of these alterations is complex; alterations of neurotransmitter levels may stem from neuronal damage, genetic damage, direct interactions between nanoplastics and neurotransmitter-degrading molecules, or some combination thereof. However, one thing is clear: nanoplastics exert a range of toxic effects on the nervous system which ultimately impair neuroplasticity [8, 9, 52].

The impact of nanoplastics on neuroplasticity and the brain is illustrated by the abnormal behaviors seen in animals with high concentrations of nanoplastics: this accumulation has been correlated with aggression, impaired predator avoidance, and disrupted circadian rhythms in zebrafish [8, 61]. The importance of neuroplasticity is particularly salient in the context of the changing world imparted by climate change [44, 62]. These new landscapes present a host of new challenges, including changing temperatures, upended food chains, and altered resource availability [44, 49, 63]. Neuroplasticity permits organisms to adapt to these changes, whether by adjusting to new temperatures or learning to consume a new source of food [44, 64]. Impaired neuroplasticity stifles this sort of short-term adaptation, accelerating the ecological effects of climate change and the rate of species extinction [44, 65, 66].

Life in Plastic, It’s (Not) Fantastic: Addressing the Impact of Plastic Pollution

While the effects of nanoplastics on organisms and ecosystems are already concerning, the dangers of plastic pollution stand out even more in the context of climate change. Nanoplastics elevate animals’ sensitivity to shifts in the environment, and unfortunately for life on Earth, such environmental shifts in the twenty-first century are widespread [61, 67, 68, 69]. Urbanization, for example, rapidly removes natural habitats from animals and forces them to either adjust to a new environment, move to a different location, or die [70, 71, 72]. In effect, impaired neuroplasticity means that a vulnerable species may fade into history, unable to keep up with the changing world [44, 65, 66]. This slide into history can be combated via the active removal of nanoplastics from waterways, firm restrictions on plastic production, and a transition toward the use of biodegradable plastics [73, 74]. Bioplastics — which can be made from plant fibers, fungi, and starches — are a promising alternative to the enduring, highly toxic plastics we rely on today. [74, 75]. Promising new innovations aim to use bacteria to ‘upcycle’ plastics into biodegradable forms, which would transform plastic pollution into environmentally friendly forms of plastic [76, 77, 78]. Regardless of the path forward, without prompt action to stop the manufacturing of plastics, plastic pollution will only continue to rise globally, and the associated health effects of climate change and nanoplastics will only continue to compound [79, 80, 81]. Because nanoplastics impair animals’ ability to adjust to climate change, this trend threatens to accelerate the rate of species’ extinction worldwide [12, 66, 79]. Curbing plastic manufacturing and opting for environmentally friendly alternatives are thus necessary steps to combat the degradation of our brains and ecosystems globally [82, 83]. So, the next time you find yourself in the midst of a record-breaking heat wave, perhaps opt for a reusable water bottle over the hundred-quadrillion nanoplastics waiting to be unleashed from a single disposable plastic bottle.

References

  1. Bruchmann, K., Chue, S. M., Dillon, K., Lucas, J. K., Neumann, K., & Parque, C. (2021). Social comparison information influences intentions to reduce single-use plastic water bottle consumption. Frontiers in Psychology, 12. doi:10.3389/fpsyg.2021.612662

  2. Hajiouni, S., Mohammadi, A., Ramavandi, B., Arfaeinia, H., De-la-Torre, G. E., Tekle-Röttering, A., & Dobaradaran, S. (2022). Occurrence of microplastics and phthalate esters in urban runoff: A focus on the Persian Gulf coastline. Science of the Total Environment, 806. doi:10.1016/j.scitotenv.2021.150559

  3. National Oceanic and Atmospheric Association. (2020, April 1). Ocean pollution and marine debris. National Oceanic and Atmospheric Association. https://noaa.gov/education/resource-collections/ocean-coasts/ocean-pollution

  4. Lebreton, L., Slat, B., Ferrari, F., Sainte-Rose, B., Aitken, J., Marthouse, R., Hajbane, S., Cunsolo, S., Schwarz, A., Levivier, A., Noble, K., Debeljak, P., Maral, H., Schoeneich-Argent, R., Brambini, R., & Reisser, J. (2018). Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Scientific Reports, 8(1). doi:10.1038/s41598-018-22939-w

  5. Gigault, J., Halle, A. ter, Baudrimont, M., Pascal, P.-Y., Gauffre, F., Phi, T.-L., El Hadri, H., Grassl, B., & Reynaud, S. (2018). Current opinion: What is a nanoplastic? Environmental Pollution, 235, 1030–1034. doi:10.1016/j.envpol.2018.01.024

  6. International Monetary Fund. (2023). Global debt monitor. Fiscal Affairs Department. https://imf.org/-/media/Files/Conferences/2023/2023-09-2023-global-debt-monitor.ashx

  7. Ward, C. P., Armstrong, C. J., Walsh, A. N., Jackson, J. H., & Reddy, C. M. (2019). Sunlight converts polystyrene to carbon dioxide and dissolved organic carbon. Environmental Science & Technology Letters, 6(11), 669–674. doi:10.1021/acs.estlett.9b00532

  8. Mattsson, K., Johnson, E. V., Malmendal, A., Linse, S., Hansson, L.-A., & Cedervall, T. (2017). Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Scientific Reports, 7(1). doi:10.1038/s41598-017-10813-0

  9. Lei, L., Liu, M., Song, Y., Lu, S., Hu, J., Cao, C., Xie, B., Shi, H., & He, D. (2018). Polystyrene (nano)microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in Caenorhabditis elegans. Environmental Science: Nano, 5(8), 2009–2020. doi:10.1039/C8EN00412A

  10. Banerjee, A., & Shelver, W. L. (2021). Micro- and nanoplastic induced cellular toxicity in mammals: A review. Science of The Total Environment, 755, 142518. doi:10.1016/j.scitotenv.2020.142518

  11. Ding, J., Zhang, S., Razanajatovo, R. M., Zou, H., & Zhu, W. (2018). Accumulation, tissue distribution, and biochemical effects of polystyrene microplastics in the freshwater fish red tilapia (Oreochromis niloticus). Environmental Pollution (Barking, Essex: 1987), 238, 1–9. doi:10.1016/j.envpol.2018.03.001

  12. O’Donnell, S. (2018). The neurobiology of climate change. The Science of Nature, 105(1), 11. doi:10.1007/s00114-017-1538-5

  13. Roch, S., Friedrich, C., & Brinker, A. (2020). Uptake routes of microplastics in fishes: Practical and theoretical approaches to test existing theories. Scientific Reports, 10(1). doi:10.1038/s41598-020-60630-1

  14. Schür, C., Beck, J., Lambert, S., Scherer, C., Oehlmann, J., & Wagner, M. (2023). Effects of microplastics mixed with natural particles on Daphnia magna populations. Science of the Total Environment, 903. doi:10.1016/j.scitotenv.2023.166521

  15. Deng, Y., Zhang, Y., Lemos, B., & Ren, H. (2017). Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Scientific Reports, 7. doi:10.1038/srep46687

  16. Anbumani, S., & Kakkar, P. (2018). Ecotoxicological effects of microplastics on biota: A review. Environmental Science and Pollution Research, 25(15), 14373–14396. doi:10.1007/s11356-018-1999-x

  17. Chae, Y., Kim, D., Kim, S. W., & An, Y.-J. (2018). Trophic transfer and individual impact of nano-sized polystyrene in a four-species freshwater food chain. Scientific Reports, 8(1). doi:10.1038/s41598-017-18849-y

  18. Gardea-Torresdey, J. L., Rico, C. M., & White, J. C. (2014). Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environmental Science & Technology, 48(5), 2526–2540. doi:10.1021/es4050665

  19. Senathirajah, K., Attwood, S., Bhagwat, G., Carbery, M., Wilson, S., & Palanisami, T. (2021). Estimation of the mass of microplastics ingested – A pivotal first step towards human health risk assessment. Journal of Hazardous Materials, 404, 124004. doi:10.1016/j.jhazmat.2020.124004

  20. Toussaint, B., Raffael, B., Angers-Loustau, A., Gilliland, D., Kestens, V., Petrillo, M., Rio-Echevarria, I. M., & Van den Eede, G. (2019). Review of micro- and nanoplastic contamination in the food chain. Food Additives & Contaminants: Part A, 36(5), 639–673. doi:10.1080/19440049.2019.1583381

  21. Lian, J., Liu, W., Meng, L., Wu, J., Chao, L., Zeb, A., & Sun, Y. (2021). Foliar-applied polystyrene nanoplastics (PSNPs) reduce the growth and nutritional quality of lettuce (Lactuca sativa L.). Environmental Pollution, 280, 116978. doi:10.1016/j.envpol.2021.116978

  22. Liu, Y., Guo, R., Zhang, S., Sun, Y., & Wang, F. (2022). Uptake and translocation of nano/microplastics by rice seedlings: Evidence from a hydroponic experiment. Journal of Hazardous Materials, 421, 126700. doi:10.1016/j.jhazmat.2021.126700

  23. Sun, X.-D., Yuan, X.-Z., Jia, Y., Feng, L.-J., Zhu, F.-P., Dong, S.-S., Liu, J., Kong, X., Tian, H., Duan, J.-L., Ding, Z., Wang, S.-G., & Xing, B. (2020). Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nature Nanotechnology, 15(9). doi:10.1038/s41565-020-0707-4

  24. Fleury, J.-B., & Baulin, V. A. (2021). Microplastics destabilize lipid membranes by mechanical stretching. Proceedings of the National Academy of Sciences, 118(31), e2104610118. doi:10.1073/pnas.2104610118

  25. Hollóczki, O., & Gehrke, S. (2020). Can nanoplastics alter cell membranes? ChemPhysChem, 21(1), 9–12. doi:10.1002/cphc.201900481

  26. Das, A. (2023). The emerging role of microplastics in systemic toxicity: Involvement of reactive oxygen species (ROS). Science of The Total Environment, 895, 165076. doi:10.1016/j.scitotenv.2023.165076

  27. Lee, S. E., Yi, Y., Moon, S., Yoon, H., & Park, Y. S. (2022). Impact of micro- and nanoplastics on mitochondria. Metabolites, 12(10), 897. doi:10.3390/metabo12100897

  28. Jeong, C.-B., Won, E.-J., Kang, H.-M., Lee, M.-C., Hwang, D.-S., Hwang, U.-K., Zhou, B., Souissi, S., Lee, S.-J., & Lee, J.-S. (2016). Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus). Environmental Science & Technology, 50(16), 8849–8857. doi:10.1021/acs.est.6b01441

  29. Paul-Pont, I., Lacroix, C., González Fernández, C., Hégaret, H., Lambert, C., Le Goïc, N., Frère, L., Cassone, A.-L., Sussarellu, R., Fabioux, C., Guyomarch, J., Albentosa, M., Huvet, A., & Soudant, P. (2016). Exposure of marine mussels Mytilus spp. to polystyrene microplastics: Toxicity and influence on fluoranthene bioaccumulation. Environmental Pollution, 216, 724–737. doi:10.1016/j.envpol.2016.06.039

  30. Qiao, R., Sheng, C., Lu, Y., Zhang, Y., Ren, H., & Lemos, B. (2019). Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish. Science of the Total Environment, 662, 246–253. doi:10.1016/j.scitotenv.2019.01.245

  31. Checa, J., & Aran, J. M. (2020). Reactive oxygen species: Drivers of physiological and pathological orocesses. Journal of Inflammation Research, 13, 1057–1073. doi:10.2147/JIR.S275595

  32. Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X., & Zhao, L. (2017). Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 9(6), 7204–7218. doi:10.18632/oncotarget.23208

  33. Mantovani, A., Dinarello, C. A., Molgora, M., & Garlanda, C. (2019). IL-1 and related cytokines in innate and adaptive immunity in health and disease. Immunity, 50(4), 778–795. doi:10.1016/j.immuni.2019.03.012

  34. Netea, M. G., Balkwill, F., Chonchol, M., Cominelli, F., Donath, M. Y., Giamarellos-Bourboulis, E. J., Golenbock, D., Gresnigt, M. S., Heneka, M. T., Hoffman, H. M., Hotchkiss, R., Joosten, L. A. B., Kastner, D. L., Korte, M., Latz, E., Libby, P., Mandrup-Poulsen, T., Mantovani, A., Mills, K. H. G., … Dinarello, C. A. (2017). A guiding map for inflammation. Nature Immunology, 18(8), 826–831. doi:10.1038/ni.3790

  35. Liu, S., Huang, B., Cao, J., Wang, Y., Xiao, H., Zhu, Y., & Zhang, H. (2023). ROS fine-tunes the function and fate of immune cells. International Immunopharmacology, 119, 110069. doi:10.1016/j.intimp.2023.110069

  36. Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P., & Malik, A. B. (2014). Reactive oxygen species in inflammation and tissue injury. Antioxidants & Redox Signaling, 20(7), 1126–1167. doi:10.1089/ars.2012.5149

  37. Zhou, W., Tong, D., Tian, D., Yu, Y., Huang, L., Zhang, W., Yu, Y., Lu, L., Zhang, X., Pan, W., Shen, J., Shi, W., & Liu, G. (n.d.). Exposure to polystyrene nanoplastics led to learning and memory deficits in zebrafish by inducing oxidative damage and aggravating brain aging. Advanced Healthcare Materials, n/a(n/a), 2301799. doi:10.1002/adhm.202301799

  38. Admasu, T. D., Rae, M., & Stolzing, A. (2021). Dissecting primary and secondary senescence to enable new senotherapeutic strategies. Ageing Research Reviews, 70, 101412. doi:10.1016/j.arr.2021.101412

  39. Hernandez-Segura, A., Nehme, J., & Demaria, M. (2018). Hallmarks of cellular senescence. Trends in Cell Biology, 28(6), 436–453. doi:10.1016/j.tcb.2018.02.001

  40. Fuchs, E., & Flügge, G. (2014). Adult neuroplasticity: More than 40 years of research. Neural Plasticity, 2014, e541870. doi:10.1155/2014/541870

  41. Mateos-Aparicio, P., & Rodríguez-Moreno, A. (2019). The impact of studying brain plasticity. Frontiers in Cellular Neuroscience, 13, 66. doi:10.3389/fncel.2019.00066

  42. Voss, P., Thomas, M. E., Cisneros-Franco, J. M., & de Villers-Sidani, É. (2017). Dynamic brains and the changing rules of neuroplasticity: Implications for learning and recovery. Frontiers in Psychology, 8. doi:10.3389/fpsyg.2017.01657

  43. Pessato, A., Udino, E., McKechnie, A. E., Bennett, A. T. D., & Mariette, M. M. (2023). Thermal acclimatisation to heatwave conditions is rapid but sex-specific in wild zebra finches. Scientific Reports, 13(1). doi:10.1038/s41598-023-45291-0

  44. Wolff, C. L., Demarais, S., Brooks, C. P., & Barton, B. T. (2020). Behavioral plasticity mitigates the effect of warming on white‐tailed deer. Ecology and Evolution, 10(5), 2579–2587. doi:10.1002/ece3.6087

  45. Lee, W., Moon, M., Kim, H. G., Lee, T. H., & Oh, M. S. (2015). Heat stress-induced memory impairment is associated with neuroinflammation in mice. Journal of Neuroinflammation, 12(1), 102. doi:10.1186/s12974-015-0324-6

  46. Shan, S., Zhang, Y., Zhao, H., Zeng, T., & Zhao, X. (2022). Polystyrene nanoplastics penetrate across the blood-brain barrier and induce activation of microglia in the brain of mice. Chemosphere, 298, 134261. doi:10.1016/j.chemosphere.2022.134261

  47. Baş, O., İlhan, H., Hancı, H., Çelikkan, H., Ekinci, D., Değermenci, M., Karapınar, B. O., Warille, A. A., Çankaya, S., & Özkasapoğlu, S. (2023). To what extent are orally ingested nanoplastics toxic to the hippocampus in young adult rats? Journal of Chemical Neuroanatomy, 132, 102314. doi:10.1016/j.jchemneu.2023.102314

  48. Yang, S., Lee, S., Lee, Y., Cho, J.-H., Kim, S. H., Ha, E.-S., Jung, Y.-S., Chung, H. Y., Kim, M.-S., Kim, H. S., Chang, S.-C., Min, K.-J., & Lee, J. (2023). Cationic nanoplastic causes mitochondrial dysfunction in neural progenitor cells and impairs hippocampal neurogenesis. Free Radical Biology and Medicine, 208, 194–210. doi:10.1016/j.freeradbiomed.2023.08.010

  49. Lai, F., Fagernes, C. E., Bernier, N. J., Miller, G. M., Munday, P. L., Jutfelt, F., & Nilsson, G. E. (2017). Responses of neurogenesis and neuroplasticity related genes to elevated CO2 levels in the brain of three teleost species. Biology Letters, 13(8), 20170240. doi:10.1098/rsbl.2017.0240

  50. Bartsch, T., & Wulff, P. (2015). The hippocampus in aging and disease: From plasticity to vulnerability. Neuroscience, 309, 1–16. doi:10.1016/j.neuroscience.2015.07.084

  51. Lee, C.-W., Hsu, L.-F., Wu, I.-L., Wang, Y.-L., Chen, W.-C., Liu, Y.-J., Yang, L.-T., Tan, C.-L., Luo, Y.-H., Wang, C.-C., Chiu, H.-W., Yang, T. C.-K., Lin, Y.-Y., Chang, H.-A., Chiang, Y.-C., Chen, C.-H., Lee, M.-H., Peng, K.-T., & Huang, C. C.-Y. (2022). Exposure to polystyrene microplastics impairs hippocampus-dependent learning and memory in mice. Journal of Hazardous Materials, 430, 128431. doi:10.1016/j.jhazmat.2022.128431

  52. Kang, H., Zhang, W., Jing, J., Huang, D., Zhang, L., Wang, J., Han, L., Liu, Z., Wang, Z., & Gao, A. (2023). The gut-brain axis involved in polystyrene nanoplastics-induced neurotoxicity via reprogramming the circadian rhythm-related pathways. Journal of Hazardous Materials, 458, 131949. doi:10.1016/j.jhazmat.2023.131949

  53. Wang, S., Han, Q., Wei, Z., Wang, Y., Xie, J., & Chen, M. (2022). Polystyrene microplastics affect learning and memory in mice by inducing oxidative stress and decreasing the level of acetylcholine. Food and Chemical Toxicology, 162, 112904. doi:10.1016/j.fct.2022.112904

  54. Guilhermino, L., Vieira, L. R., Ribeiro, D., Tavares, A. S., Cardoso, V., Alves, A., & Almeida, J. M. (2018). Uptake and effects of the antimicrobial florfenicol, microplastics and their mixtures on freshwater exotic invasive bivalve Corbicula fluminea. Science of The Total Environment, 622–623, 1131–1142. doi:10.1016/j.scitotenv.2017.12.020

  55. Ribeiro, F., Garcia, A. R., Pereira, B. P., Fonseca, M., Mestre, N. C., Fonseca, T. G., Ilharco, L. M., & Bebianno, M. J. (2017). Microplastics effects in Scrobicularia plana. Marine Pollution Bulletin, 122(1–2), 379–391. doi:10.1016/j.marpolbul.2017.06.078

  56. Haam, J., & Yakel, J. L. (2017). Cholinergic modulation of the hippocampal region and memory function. Journal of Neurochemistry, 142(Suppl 2), 111–121. doi:10.1111/jnc.14052

  57. Huang, Q., Liao, C., Ge, F., Ao, J., & Liu, T. (2022). Acetylcholine bidirectionally regulates learning and memory. Journal of Neurorestoratology, 10(2), 100002. doi:10.1016/j.jnrt.2022.100002

  58. Chen, Q., Yin, D., Jia, Y., Schiwy, S., Legradi, J., Yang, S., & Hollert, H. (2017). Enhanced uptake of BPA in the presence of nanoplastics can lead to neurotoxic effects in adult zebrafish. The Science of the Total Environment, 609, 1312–1321. doi:10.1016/j.scitotenv.2017.07.144

  59. Sperling, L. E., Klaczinski, J., Schütz, C., Rudolph, L., & Layer, P. G. (2012). Mouse acetylcholinesterase enhances neurite outgrowth of rat R28 cells through interaction with Laminin-1. PLoS ONE, 7(5), e36683. doi:10.1371/journal.pone.0036683

  60. Li, X.-W., Ren, Y., Shi, D.-Q., Qi, L., Xu, F., Xiao, Y., Lau, P.-M., & Bi, G.-Q. (2023). Biphasic cholinergic modulation of reverberatory activity in neuronal networks. Neuroscience Bulletin, 39(5), 731–744. doi:10.1007/s12264-022-01012-7

  61. Sarasamma, S., Audira, G., Siregar, P., Malhotra, N., Lai, Y.-H., Liang, S.-T., Chen, J.-R., Chen, K. H.-C., & Hsiao, C.-D. (2020). Nanoplastics cause neurobehavioral impairments, reproductive and oxidative damages, and biomarker responses in zebrafish: Throwing up alarms of wide spread health risk of exposure. International Journal of Molecular Sciences, 21(4). doi:10.3390/ijms21041410

  62. Weiss, L. C. (2022). Neurobiology of phenotypic plasticity in the light of climate change. Neuroforum, 28(1), 1–12. doi:10.1515/nf-2021-0029

  63. Draper, A. M., & Weissburg, M. J. (2019). Impacts of global warming and elevated CO2 on sensory behavior in predator-prey interactions: A review and synthesis. Frontiers in Ecology and Evolution, 7. doi:10.3389/fevo.2019.00072

  64. Loureiro, M., Achargui, R., Flakowski, J., Van Zessen, R., Stefanelli, T., Pascoli, V., & Lüscher, C. (2019). Social transmission of food safety depends on synaptic plasticity in the prefrontal cortex. Science, 364(6444), 991–995. doi:10.1126/science.aaw5842

  65. Sabino-Pinto, J., Goedbloed, D. J., Sanchez, E., Czypionka, T., Nolte, A. W., & Steinfartz, S. (2019). The role of plasticity and adaptation in the incipient speciation of a fire salamander population. Genes, 10(11). doi:10.3390/genes10110875

  66. Fox, L., Stukins, S., Hill, T., & Miller, C. G. (2020). Quantifying the effect of anthropogenic climate change on calcifying plankton. Scientific Reports, 10(1). doi:10.1038/s41598-020-58501-w

  67. Doney, S. C., Busch, D. S., Cooley, S. R., & Kroeker, K. J. (2020). The impacts of ocean acidification on marine ecosystems and reliant human communities. Annual Review of Environment and Resources, 45(1), 83–112. doi:10.1146/annurev-environ-012320-083019

  68. Myers, K. F., Doran, P. T., Cook, J., Kotcher, J. E., & Myers, T. A. (2021). Consensus revisited: Quantifying scientific agreement on climate change and climate expertise among Earth scientists 10 years later. Environmental Research Letters, 16(10), 104030. doi:10.1088/1748-9326/ac2774

  69. Ripple, W. J., Wolf, C., Gregg, J. W., Rockström, J., Newsome, T. M., Law, B. E., Marques, L., Lenton, T. M., Xu, C., Huq, S., Simons, L., & King, S. D. A. (2023). The 2023 state of the climate report: Entering uncharted territory. BioScience, biad080. doi:10.1093/biosci/biad080

  70. Shannon, G., McKenna, M. F., Angeloni, L. M., Crooks, K. R., Fristrup, K. M., Brown, E., Warner, K. A., Nelson, M. D., White, C., Briggs, J., McFarland, S., & Wittemyer, G. (2016). A synthesis of two decades of research documenting the effects of noise on wildlife. Biological Reviews, 91(4), 982–1005. doi:10.1111/brv.12207

  71. Sangma, J. T., & Trivedi, A. K. (2023). Light at night: Effect on the daily clock, learning, memory, cognition, and expression of transcripts in different brain regions of rat. Photochemical & Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology, 22(10), 2297–2314. doi:10.1007/s43630-023-00451-z

  72. Brans, K. I., Jansen, M., Vanoverbeke, J., Tüzün, N., Stoks, R., & De Meester, L. (2017). The heat is on: Genetic adaptation to urbanization mediated by thermal tolerance and body size. Global Change Biology, 23(12), 5218–5227. doi:10.1111/gcb.13784

  73. Shen, M., Zhang, Y., Almatrafi, E., Hu, T., Zhou, C., Song, B., Zeng, Z., & Zeng, G. (2022). Efficient removal of microplastics from wastewater by an electrocoagulation process. Chemical Engineering Journal, 428. doi:10.1016/j.cej.2021.131161

  74. Gholampour, A., & Ozbakkaloglu, T. (2020). A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. Journal of Materials Science, 55(3), 829–892. doi:10.1007/s10853-019-03990-y

  75. Wayllace, N. M., Martín, M., Busi, M. V., & Gomez-Casati, D. F. (2023). Microbial glucoamylases: Structural and functional properties and biotechnological uses. World Journal of Microbiology and Biotechnology, 39(11). doi:10.1007/s11274-023-03731-z

  76. Bao, T., Qian, Y., Xin, Y., Collins, J. J., & Lu, T. (2023). Engineering microbial division of labor for plastic upcycling. Nature Communications, 14(1). doi:10.1038/s41467-023-40777-x

  77. Liu, P., Zheng, Y., Yuan, Y., Zhang, T., Li, Q., Liang, Q., Su, T., & Qi, Q. (2022). Valorization of polyethylene terephthalate to muconic acid by engineering Pseudomonas putida. International Journal of Molecular Sciences, 23(19). doi:10.3390/ijms231910997

  78. Diao, J., Hu, Y., Tian, Y., Carr, R., & Moon, T. S. (2023). Upcycling of poly(ethylene terephthalate) to produce high-value bio-products. Cell Reports, 42(1), 111908. doi:10.1016/j.celrep.2022.111908

  79. Wu, N. C., Rubin, A. M., & Seebacher, F. (2022). Endocrine disruption from plastic pollution and warming interact to increase the energetic cost of growth in a fish. Proceedings of the Royal Society B: Biological Sciences, 289(1967), 20212077. doi:10.1098/rspb.2021.2077

  80. Cabral, H., Fonseca, V., Sousa, T., & Costa Leal, M. (2019). Synergistic effects of climate change and marine pollution: An overlooked interaction in coastal and estuarine areas. International Journal of Environmental Research and Public Health, 16(15). doi:10.3390/ijerph16152737

  81. Ford, H. V., Jones, N. H., Davies, A. J., Godley, B. J., Jambeck, J. R., Napper, I. E., Suckling, C. C., Williams, G. J., Woodall, L. C., & Koldewey, H. J. (2022). The fundamental links between climate change and marine plastic pollution. Science of The Total Environment, 806, 150392. doi:10.1016/j.scitotenv.2021.150392

  82. Cowan, E., Tiller, R., Oftebro, T. L., Throne-Holst, M., & Normann, A. K. (2023). Orchestration within plastics governance – From global to Arctic. Marine Pollution Bulletin, 197. doi:10.1016/j.marpolbul.2023.115635

  83. Le, V.-G., Nguyen, M.-K., Nguyen, H.-L., Lin, C., Hadi, M., Hung, N. T. Q., Hoang, H.-G., Nguyen, K. N., Tran, H.-T., Hou, D., Zhang, T., & Bolan, N. S. (2023). A comprehensive review of micro- and nano-plastics in the atmosphere: Occurrence, fate, toxicity, and strategies for risk reduction. Science of the Total Environment, 904. doi:10.1016/j.scitotenv.2023.166649

Next
Next

Brain Smog: How Pollution Damages the Brain