Immune Wars: The Past, Present, and Future of Multiple Sclerosis Research

Daniel Wunschel

Illustrations by Abigail Schoenecker

Episode I: The Phantom Disorder

For most, hopping out of bed and brushing your teeth are tasks done with ease. Once you decide to get up, your muscles spring into action and you find yourself standing in no time. In the bathroom, you quickly squeeze toothpaste on your brush and get to cleaning your teeth. Now imagine yourself back in bed: despite your best efforts, your muscles can not enact what your brain asks them to do. Once you finally make it to the bathroom, your shaking hands struggle to remove the cap and squeeze the tube before the paste misses the brush and falls into the sink. No matter how hard you try, the movements of your muscles never match what your brain is dictating. For people living with multiple sclerosis (MS), daily tasks — such as getting out of bed and brushing your teeth — can become overwhelmingly difficult. Multiple sclerosis is the most common neurological disease in people of ages 20 to 40, and the disease typically presents through muscle weakness, visual impairment, and a loss of coordination and control over bodily movements [1, 2]. MS can vary over a person’s lifetime, causing those affected to experience phases of relapse and recovery [1]. While we know how MS manifests, the disorder remains a neurological puzzle with many missing pieces [3]. Many of these missing pieces rely on understanding the biology behind the cause of the disease and its progression [3]. Although the specific cause of MS is unknown, some associated factors have been identified, including low levels of vitamin D, tobacco smoking, and certain viruses [2, 4, 5]. Of these potential causes, the Epstein-Barr virus (EBV) has drawn significant interest amongst researchers [6, 7]. EBV is the most common cause of mononucleosis — commonly known as ‘mono’ — and is associated with a 32-fold increased risk of developing MS [6, 7]. While nearly everyone with MS is infected with EBV, there are many more individuals infected with EBV that do not develop MS, creating a cloud of uncertainty surrounding the relationship between EBV and MS [7]. Nonetheless, belief in the connection between EBV and MS has guided research for decades [8, 9].

Episode II: Attack of the T-Cells

Despite the uncertainty surrounding the causes of MS, we know MS is an autoimmune disease in which the immune system attacks its own body’s tissues [10, 11, 12]. Normally, the immune system targets disease-causing bacteria or viruses called pathogens, but a malfunctioning immune system may also mistakenly attack healthy cells or tissues like myelin [13, 14, 15]. Dysfunctional immune activation sometimes causes immune cells to migrate into the brain and inadvertently target oligodendrocytes — cells that produce insulation called myelin — as well as myelin itself [14, 16]. Myelin is a fat and protein-rich insulation that wraps around the axons of neurons in the brain, forming a layer called the myelin sheath [17, 18]. Like the coating on electrical wires protecting the transmission of electric current, myelin helps to transmit signals between neurons [17, 19]. The loss of myelin, called demyelination, is followed by axon degradation, which diminishes the ability of neurons to transmit crucial signals [17]. In addition, the destruction of oligodendrocytes reduces the brain’s ability to produce new insulation [17]. While the cause of the initial immune response in MS which damages oligodendrocytes and myelin is unknown, demyelination is believed to be perpetuated by the dysfunctional activation of the immune system, leading to neuroinflammation [20, 21].

Neuroinflammation is the activation of the brain’s immune system in response to infection or injuries [22]. In MS, neuroinflammation becomes harmful to the body when T-cells — a type of immune cell that normally kills infected cells — go into overdrive and attack healthy tissue [23, 24, 25]. In conjunction with neuroinflammation, immune attacks on oligodendrocytes and myelin result in the formation of lesions, or localized damage to the brain or spinal cord [26, 27]. Depending on the site and severity of lesions, people with MS experience different symptoms [1]. Lesions along the optic nerve cause visual impairment, a common symptom of early-stage MS. [1, 17, 28]. Lesions on muscle-stimulating nerve fibers may cause difficulty walking by preventing muscles from receiving signals from the central nervous system, leading to reduced control over body movements [29, 30, 31].

Episode III: Revenge of the Statistics

Research into EBV as a potential causal factor of MS stems from a seemingly monumental statistic: almost everyone diagnosed with MS tests positive for EBV [1, 7, 32]. The overlap in EBV and MS has fueled research into the potential causal link between MS and EBV, in which EBV possibly triggers the dysfunctional immune response and associated neuroinflammation in MS [33, 34]. Active EBV infections are thought to be characterized by an increase in the number and reactivity of EBV-attacking T-cells, which contributes to neuroinflammation [33, 35]. Another way EBV may trigger neuroinflammation is by mimicking myelin proteins, which hold together the layers of myelin sheaths [34, 36, 37]. When EBV infects the body, the immune system responds by sending T-cells to attack foreign pathogens [34, 36]. When attempting to kill EBV, the virus’s structural resemblance to myelin may cause the immune system to attack myelin proteins instead, leading to further neuroinflammation [6, 34, 38]. Additionally, the risk of MS increases with the degree of EBV infection, suggesting a connection between severity of EBV and MS symptoms [34, 35, 39].

Despite a multitude of discoveries suggesting an EBV-MS connection, we cannot conclude that EBV alone causes the development of the autoimmune disorder [6, 33, 40]. As is the case with many other viruses, EBV may remain in the body in a latent state even after an infected individual has recovered from their initial symptoms [41, 42]. Since nearly everyone with MS has EBV, one might think that EBV causes MS, however, this connection has not been established [44, 45]. People who are diagnosed with MS also test positive for hundreds of other viruses, suggesting that viral presence in individuals with MS is not unique to EBV [46]. Many people with MS present with general autoimmune dysfunction and receive autoimmune diagnoses outside of MS [47, 48, 49]. For example, a number of people who test positive for MS and EBV are also diagnosed with inflammatory bowel disease — an autoimmune disorder affecting the digestive tract — or Hashimoto’s disease — an autoimmune disease that affects the thyroid [50, 51, 52]. While EBV is not a definitive cause of MS, research into EBV’s connection to MS has helped expand our understanding of the role of neuroinflammation in people living with MS [6, 34].

Episode IV: A Neurological Hope

While the connections between EBV and MS are unclear, investigations continue to explore the relationship between the immune and nervous systems, primarily focusing on the role of neuroinflammation in the immune system’s response [8, 53, 54]. By improving our understanding of the connection between MS and neuroimmunology — the combined study of neuroscience and the immune system — personalized treatments can be built for people living with MS [55]. In order to improve the efficacy of MS treatments and construct individualized treatment plans, it’s crucial to map gene activity and examine what proteins are implicated in the development of MS [56, 57, 58]. Mapping genes and proteins involved in MS can reveal characteristics unique to each person living with the disease and be used to develop individualized drug therapy treatments [59, 60, 61, 62]. One leading MS treatment strategy involves modifying genes involved in the immune response of people with MS, in order to dampen autoimmune effects experienced by people living with the disease [62]. Novel techniques, such as RNA sequencing, provide a detailed picture of the biological processes altered by MS, allowing us to further understand the contributing factors to disease development by locating and targeting related genes and proteins in treatment [63, 64, 65].

In recent years, additional treatment methods for MS that directly target components of neuroinflammation have improved the quality of life for people with the disease [9, 66]. Novel methods include disease-modifying treatments (DMTs), which reduce the immune response in the brain and aim to limit demyelination and disease progression as a whole [67]. Currently, 20 DMTs are approved for MS in the United States, each one targeting a different component of the overactive immune system [42, 68]. For example, one type of DMT, Fingolimod, reduces the ability of immune cells to engage with the CNS by preventing the circulation of lymphocytes: immune cells made in bone marrow, including T-cells [68, 69, 70]. Fingolimod is also suspected to lessen attacks on myelin, which in turn decreases neuroinflammation by reducing the amount of inflammation-promoting molecules [42, 68, 71]. In clinical trials, Fingolimod has successfully reduced relapse rates and significantly decreased disability progression, lesion activity, and brain volume loss in people with MS [72].

In addition to DMTs, medications that encourage remyelination — the process of forming new myelin sheaths around axons — are promising [73, 74, 75]. Some of these medications enhance the differentiation of oligodendrocyte precursor cells (OPCs) into oligodendrocytes [76]. One way medications do this is by altering the local environment to become more hospitable to OPCs created within the brain [76]. OPCs are prevalent in MS lesions, but the microenvironments of lesions prevent OPCs from becoming oligodendrocytes [42, 77]. Medications that encourage the transformation of OPCs into oligodendrocytes aid in the formation of new myelin, which prevents axon degradation and improves MS symptoms [76, 78]. Two FDA-approved drugs that have improved remyelination are miconazole and clobetasol [79]. Miconazole, an antifungal medication, encourages the development of oligodendrocytes by promoting OPC differentiation into oligodendrocytes, aiding remyelination without causing damage to the immune system [79, 80]. Clobetasol, a widely-used eczema medication, is an immunosuppressant that also helps with remyelination. [79, 80]. Clobetasol increases the differentiation of oligodendrocytes in lesions and promotes the signaling of anti-inflammatory molecules, reducing inflammation and promoting remyelination [81]. Drugs with both similar and different mechanisms of action are being developed today [82].

Episode V: The Clinical Trials Strike Back

While it may seem that time spent looking into a connection between EBV and MS was wasted due to no definitive links between the virus and the disease being uncovered, the treatments of today and tomorrow are founded on information uncovered due to this research [9, 55, 56]. Neuroinflammation in MS may not originate from EBV, but EBV is still thought to play an important role in the disease [7, 8, 9]. As we continue to search for the missing pieces of the MS puzzle, several ongoing clinical trials that focus on neuroinflammatory correlates of MS hold promise [82]. Clinical trials that target dysfunction in myelination and immune suppression may improve the quality of life for people with MS. Over the next few years, several clinical trials are expected to reach completion, adding to the arsenal of treatments against MS [82]. By aiming to slow down disease progression and improve shortcomings of current treatments, clinical trials can make common tasks like brushing your teeth and getting out of bed more achievable for people with multiple sclerosis.

Episode VI: Return of the References 

  1. Ghasemi, N., Razavi, S., & Nikzad, E. (2017). Multiple sclerosis: Pathogenesis, symptoms, diagnoses and cell-based therapy. Cell J (Yakhteh), 19(1). doi:10.22074/cellj.2016.4867

  2. Wallin, M. T., Culpepper, W. J., Campbell, J. D., Nelson, L. M., Langer-Gould, A., Marrie, R. A., Cutter, G. R., Kaye, W. E., Wagner, L., Tremlett, H., Buka, S. L., Dilokthornsakul, P., Topol, B., Chen, L. H., & LaRocca, N. G. (2019). The prevalence of MS in the United States: A population-based estimate using health claims data. Neurology, 92(10). doi:10.1212/WNL.0000000000007035

  3. Kamm, C. P., Uitdehaag, B. M., & Polman, C. H. (2014). Multiple sclerosis: Current knowledge and future outlook. European Neurology, 72(3–4), 132–141. doi:10.1159/000360528

  4. McGinley, M. P., Goldschmidt, C. H., & Rae-Grant, A. D. (2021). Diagnosis and treatment of multiple sclerosis: A review. JAMA, 325(8), 765. doi:10.1001/jama.2020.26858

  5. Waubant, E., Lucas, R., Mowry, E., Graves, J., Olsson, T., Alfredsson, L., & Langer‐Gould, A. (2019). Environmental and genetic risk factors for MS: An integrated review. Annals of Clinical and Translational Neurology, 6(9), 1905–1922. doi:10.1002/acn3.50862

  6. Bjornevik, K., Cortese, M., Healy, B. C., Kuhle, J., Mina, M. J., Leng, Y., Elledge, S. J., Niebuhr, D. W., Scher, A. I., Munger, K. L., & Ascherio, A. (2022). Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science, 375(6578), 296–301. doi:10.1126/science.abj8222

  7. Robinson, W. H., & Steinman, L. (2022a). Epstein-Barr virus and multiple sclerosis. Science, 375(6578), 264–265. doi:10.1126/science.abm7930

  8. Pachner, A. R. (2022). The neuroimmunology of multiple sclerosis: Fictions and facts. Frontiers in Neurology, 12. doi:10.3389/fneur.2021.796378

  9. Hollen, C. W., Paz Soldán, M. M., Rinker, J. R., 2nd, & Spain, R. I. (2020). The Future of Progressive Multiple Sclerosis Therapies. Federal Practitioner, 37(Suppl 1), S43–S49. PMID:32341636

  10. Leray, E., Moreau, T., Fromont, A., & Edan, G. (2016). Epidemiology of multiple sclerosis. Revue Neurologique, 172(1), 3–13. doi:10.1016/j.neurol.2015.10.006

  11. Ruprecht, K. (2020). The role of Epstein-Barr virus in the etiology of multiple sclerosis: A current review. Expert Review of Clinical Immunology, 16(12), 1143–1157. doi: 10.1080/1744666x.2021.1847642 

  12. Dobson, R., & Giovannoni, G. (2019). Multiple sclerosis – a review. European Journal of Neurology, 26(1), 27–40. doi:10.1111/ene.13819

  13. Hejrati, A., Rafiei, A., Soltanshahi, M., Hosseinzadeh, S., Dabiri, M., Taghadosi, M., Taghiloo, S., Bashash, D., Khorshidi, F., & Zafari, P. (2020). Innate immune response in systemic autoimmune diseases: A potential target of therapy. Inflammopharmacology, 28(6), 1421–1438. doi:10.1007/s10787-020-00762-y

  14. Rodríguez Murúa, S., Farez, M. F., & Quintana, F. J. (2022). The immune response in multiple sclerosis. Annual Review of Pathology: Mechanisms of Disease, 17(1), 121–139. doi:10.1146/annurev-pathol-052920-040318

  15. Riedhammer, C., & Weissert, R. (2015). Antigen presentation, autoantigens, and immune regulation in multiple sclerosis and other autoimmune diseases. Frontiers in Immunology, 6. doi:10.3389/fimmu.2015.00322

  16. López-Muguruza, E., & Matute, C. (2023). Alterations of oligodendrocyte and myelin energy metabolism in multiple sclerosis. International Journal of Molecular Sciences, 24(16), 12912. doi:10.3390/ijms241612912

  17. Al-Badri, G., & Castorina, A. (2018). Insights into the role of neuroinflammation in the pathogenesis of multiple sclerosis. Journal of Functional Morphology and Kinesiology, 3(1), 13. doi:10.3390/jfmk3010013

  18. Poitelon, Y., Kopec, A., & Belin, S. (2020). Myelin Fat Facts: An Overview of Lipids and Fatty Acid Metabolism. Cells, 9(4). doi:10.3390/cells9040812.

  19. Haase, S., & Linker, R. A. (2021). Inflammation in multiple sclerosis. Therapeutic Advances in Neurological Disorders, 14. doi:10.1177/17562864211007687

  20. Stys, P. K. (2010). Multiple sclerosis: Autoimmune disease or autoimmune reaction? Canadian Journal of Neurological Sciences / Journal Canadien Des Sciences Neurologiques, 37(S2). doi: 10.1017/s0317167100022393 

  21. Falcão, A. M., van Bruggen, D., Marques, S., Meijer, M., Jäkel, S., Agirre, E., Samudyata, Floriddia, E. M., Vanichkina, D. P., ffrench-Constant, C., Williams, A., Guerreiro-Cacais, A. O., & Castelo-Branco, G. (2018). Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nature Medicine, 24(12), 1837–1844. doi: 10.1038/s41591-018-0236-y 

  22. DiSabato, D. J., Quan, N., & Godbout, J. P. (2016). Neuroinflammation: The devil is in the details. Journal of Neurochemistry, 139(S2), 136–153. doi:10.1111/jnc.13607

  23. Ludwin, S. K., Rao, V. T., Moore, C. S., & Antel, J. P. (2016). Astrocytes in multiple sclerosis. Multiple Sclerosis Journal, 22(9), 1114–1124. doi:10.1177/1352458516643396

  24. Papiri, G., D’Andreamatteo, G., Cacchiò, G., Alia, S., Silvestrini, M., Paci, C., Luzzi, S., & Vignini, A. (2023). Multiple sclerosis: Inflammatory and neuroglial aspects. Current Issues in Molecular Biology, 45(2), 1443–1470. doi:10.3390/cimb45020094

  25. Pegoretti, V., Swanson, K. A., Bethea, J. R., Probert, L., Eisel, U. L. M., & Fischer, R. (2020). Inflammation and oxidative stress in multiple sclerosis: Consequences for therapy development. Oxidative Medicine and Cellular Longevity, 2020, 1–19. doi:10.1155/2020/7191080

  26. Lassmann, H. (2018). Multiple sclerosis pathology. Cold Spring Harbor Perspectives in Medicine, 8(3), a028936. doi:10.1101/cshperspect.a028936

  27. Desai, R. A., Davies, A. L., Tachrount, M., Kasti, M., Laulund, F., Golay, X., & Smith, K. J. (2016). Cause and prevention of demyelination in a model multiple sclerosis lesion. Annals of Neurology, 79(4), 591–604. doi:10.1002/ana.24607

  28. Kale, N. (2016). Optic neuritis as an early sign of multiple sclerosis. Eye and Brain, 8, 195–202. doi:10.2147/EB.S54131

  29. Kamma, E., Lasisi, W., Libner, C., Ng, H. S., & Plemel, J. R. (2022). Central nervous system macrophages in progressive multiple sclerosis: Relationship to neurodegeneration and therapeutics. Journal of Neuroinflammation, 19(1), 45. doi:10.1186/s12974-022-02408-y

  30. Gelfand, J. M. (2014). Multiple sclerosis: Diagnosis, differential diagnosis, and clinical presentation. In Handbook of Clinical Neurology, 122 269–290. Elsevier. doi:10.1016/B978-0-444-52001-2.00011-X

  31. Kumari, A., Dybus, A., Purcell, M., & Vuckovic, A. (2024). Motor Priming to Enhance the Effect of Physical Therapy in People with Spinal Cord Injury. The Journal of Spinal Cord Medicine, doi:10.1080/10790268.2024.2317011.

  32. Barukčić, K., & Barukčić, I. (2016). Epstein barr virus—The cause of multiple sclerosis. Journal of Applied Mathematics and Physics, 4(6), 1042–1053. doi:10.4236/jamp.2016.46109

  33. Morandi, E., Jagessar, S. A., ‘t Hart, B. A., & Gran, B. (2017). EBV infection empowers human B cells for autoimmunity: Role of autophagy and relevance to multiple sclerosis. The Journal of Immunology, 199(2), 435–448. doi:10.4049/jimmunol.1700178

  34. Soldan, S. S., & Lieberman, P. M. (2023). Epstein–Barr virus and multiple sclerosis. Nature Reviews Microbiology, 21(1), 51–64. doi:10.1038/s41579-022-00770-5

  35. Guan, Y., Jakimovski, D., Ramanathan, M., Weinstock-Guttman, B., & Zivadinov, R. (2019). The role of Epstein-Barr virus in multiple sclerosis: From molecular pathophysiology to in vivo imaging. Neural Regeneration Research, 14(3), 373. doi:10.4103/1673-5374.245462

  36. Wang, J., Jelcic, I., Mühlenbruch, L., Haunerdinger, V., Toussaint, N. C., Zhao, Y., Cruciani, C., Faigle, W., Naghavian, R., Foege, M., Binder, T. M. C., Eiermann, T., Opitz, L., Fuentes-Font, L., Reynolds, R., Kwok, W. W., Nguyen, J. T., Lee, J.-H., Lutterotti, A., Münz, C., Rammensee, H., Hauri-Hohl, M., Sospedra, M., Stevanovic, S., & Martin, R. (2020). HLA-DR15 molecules jointly shape an autoreactive T cell repertoire in multiple sclerosis. Cell, 183(5), 1264-1281.e20. doi:10.1016/j.cell.2020.09.054

  37. Martinsen, V., & Kursula, P. (2022). Multiple sclerosis and myelin basic protein: Insights into protein disorder and disease. Amino Acids, 54(1), 99–109. doi:10.1007/s00726-021-03111-7

  38. Yim, A., Smith, C., & Brown, A. M. (2022). Osteopontin/secreted phosphoprotein‐1 harnesses glial‐, immune‐, and neuronal cell ligand‐receptor interactions to sense and regulate acute and chronic neuroinflammation. Immunological Reviews, 311(1), 224–233. doi: 10.1111/imr.13081 

  39. Zhang, N., Zuo, Y., Jiang, L., Peng, Y., Huang, X., & Zuo, L. (2022). Epstein-Barr virus and neurological diseases. Frontiers in Molecular Biosciences, 8. doi: 10.3389/fmolb.2021.816098 

  40. Houen, G., Trier, N. H., & Frederiksen, J. L. (2020). Epstein-barr virus and multiple sclerosis. Frontiers in Immunology, 11. doi:10.3389/fimmu.2020.587078

  41. Smatti, M. K., Al-Sadeq, D. W., Ali, N. H., Pintus, G., Abou-Saleh, H., & Nasrallah, G. K. (2018). Epstein–barr virus epidemiology, serology, and genetic variability of LMP-1 oncogene among healthy population: An update. Frontiers in Oncology, 8, 211. doi:10.3389/fonc.2018.00211

  42. Amin, M., & Hersh, C. M. (2023). Updates and advances in multiple sclerosis neurotherapeutics. Neurodegenerative Disease Management, 13(1), 47–70. doi:10.2217/nmt-2021-0058

  43. Sausen, D., Bhutta, M., Gallo, E., Dahari, H., & Borenstein, R. (2021). Stress-induced epstein-barr virus reactivation. Biomolecules, 11(9), 1380. doi:10.3390/biom11091380

  44. Bar-Or, A., Pender, M. P., Khanna, R., Steinman, L., Hartung, H.-P., Maniar, T., Croze, E., Aftab, B. T., Giovannoni, G., & Joshi, M. A. (2020). Epstein–barr virus in multiple sclerosis: Theory and emerging immunotherapies. Trends in Molecular Medicine, 26(3), 296–310. doi:10.1016/j.molmed.2019.11.003

  45. Lanz, T. V., Brewer, R. C., Ho, P. P., Moon, J.-S., Jude, K. M., Fernandez, D., Fernandes, R. A., Gomez, A. M., Nadj, G.-S., Bartley, C. M., Schubert, R. D., Hawes, I. A., Vazquez, S. E., Iyer, M., Zuchero, J. B., Teegen, B., Dunn, J. E., Lock, C. B., Kipp, L. B., Cotham, V. C., Ueberheide, B. M., Aftab, B. T., Anderson, M. S., DeRisi, J. L., Wilson, M. R., Bashford-Rogers, R. J. M., Platten, M., Garcia, K. C., Steinman, L., & Robinson, W. H. (2022). Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature, 603(7900), 321–327. doi:10.1038/s41586-022-04432-7

  46. Oskari Virtanen, J., & Jacobson, S. (2012). Viruses and multiple sclerosis. CNS & Neurological Disorders - Drug Targets, 11(5), 528–544. doi: 10.2174/187152712801661220 

  47. Marrie, R. A., Reider, N., Cohen, J., Stuve, O., Sorensen, P. S., Cutter, G., Reingold, S. C., & Trojano, M. (2014). A systematic review of the incidence and prevalence of autoimmune disease in multiple sclerosis. Multiple Sclerosis Journal, 21(3), 282–293. doi: 10.1177/1352458514564490 

  48. Magyari, M., Koch-Henriksen, N., Pfleger, C. C., & Sørensen, P. S. (2014). Gender and autoimmune comorbidity in multiple sclerosis. Multiple Sclerosis Journal, 20(9), 1244–1251. doi:10.1177/1352458514521515

  49. Magyari, M., & Sorensen, P. S. (2020). Comorbidity in multiple sclerosis. Frontiers in Neurology, 11, 851. doi:10.3389/fneur.2020.00851

  50. Nociti, V., & Romozzi, M. (2022). Multiple sclerosis and autoimmune comorbidities. Journal of Personalized Medicine, 12(11), 1828. doi:10.3390/jpm12111828

  51. Janegova, A., Janega, P., Rychly, B., Kuracinova, K., & Babal, P. (2015). Rola infekcji wirusem Epstein-Barr’a w rozwoju autoimmunologicznych chorób tarczycy. Endokrynologia Polska, 66(2), 132–136. doi:10.5603/EP.2015.0020

  52. Assaad, S. N., Meheissen, M. A., Elsayed, E. T., Alnakhal, S. N., & Salem, T. M. (2020). Study of Epstein–Barr virus serological profile in Egyptian patients with Hashimoto’s thyroiditis: A case-control study. Journal of Clinical & Translational Endocrinology, 20, 100222. doi:10.1016/j.jcte.2020.100222

  53. Eva, L., Pleș, H., Covache-Busuioc, R.-A., Glavan, L. A., Bratu, B.-G., Bordeianu, A., Dumitrascu, D.-I., Corlatescu, A. D., & Ciurea, A. V. (2023). A comprehensive review on neuroimmunology: Insights from multiple sclerosis to future therapeutic developments. Biomedicines, 11(9), 2489. doi:10.3390/biomedicines11092489

  54. Ellwardt, E., & Zipp, F. (2014). Molecular mechanisms linking neuroinflammation and neurodegeneration in MS. Experimental Neurology, 262, 8–17. doi:10.1016/j.expneurol.2014.02.006

  55. Callegari, I., Derfuss, T., & Galli, E. (2021). Update on treatment in multiple sclerosis. La Presse Médicale, 50(2), 104068. doi:10.1016/j.lpm.2021.104068

  56. Dargahi, N., Katsara, M., Tselios, T., Androutsou, M.-E., De Courten, M., Matsoukas, J., & Apostolopoulos, V. (2017). Multiple sclerosis: Immunopathology and treatment update. Brain Sciences, 7(12), 78. doi:10.3390/brainsci7070078

  57. Carlström, K. E., Ewing, E., Granqvist, M., Gyllenberg, A., Aeinehband, S., Enoksson, S. L., Checa, A., Badam, T. V. S., Huang, J., Gomez-Cabrero, D., Gustafsson, M., Al Nimer, F., Wheelock, C. E., Kockum, I., Olsson, T., Jagodic, M., & Piehl, F. (2019). Therapeutic efficacy of dimethyl fumarate in relapsing-remitting multiple sclerosis associates with ROS pathway in monocytes. Nature Communications, 10(1), 3081. doi:10.1038/s41467-019-11139-3

  58. Correale, J., Gaitán, M. I., Ysrraelit, M. C., & Fiol, M. P. (2016). Progressive multiple sclerosis: From pathogenic mechanisms to treatment. Brain, 140(3), 527-546. doi:10.1093/brain/aww258

  59. Chiricosta, L., Blando, S., D’Angiolini, S., Gugliandolo, A., & Mazzon, E. (2023). A comprehensive exploration of the transcriptomic landscape in multiple sclerosis: A systematic review. International Journal of Molecular Sciences, 24(2), 1448. doi:10.3390/ijms24021448

  60. Sandi, D., Kokas, Z., Biernacki, T., Bencsik, K., Klivényi, P., & Vécsei, L. (2022). Proteomics in multiple sclerosis: The perspective of the clinician. International Journal of Molecular Sciences, 23(9), 5162. doi:10.3390/ijms23095162

  61. Gadani, S. P., Singh, S., Kim, S., Smith, M. D., Calabresi, P. A., & Bhargava, P. (2023). Spatial transcriptomics of meningeal inflammation reveals variable penetrance of inflammatory gene signatures into adjacent brain parenchyma. eLife, 12. doi:10.7554/eLife.88414.1

  62. Lin, J., Zhou, J., & Xu, Y. (2023). Potential drug targets for multiple sclerosis identified through Mendelian randomization analysis. Brain, 146(8), 3364–3372. doi:10.1093/brain/awad070

  63. Fyfe, I. (2022). Insights into the molecular pathways of progressive multiple sclerosis. Nature Reviews Neurology, 18(8), 453–453. doi:10.1038/s41582-022-00695-w

  64. Åkesson, J., Hojjati, S., Hellberg, S., Raffetseder, J., Khademi, M., Rynkowski, R., Kockum, I., Altafini, C., Lubovac-Pilav, Z., Mellergård, J., Jenmalm, M. C., Piehl, F., Olsson, T., Ernerudh, J., & Gustafsson, M. (2023). Proteomics reveal biomarkers for diagnosis, disease activity and long-term disability outcomes in multiple sclerosis. Nature Communications, 14(1). doi: 10.1038/s41467-023-42682-9 

  65. Kihara, Y., Zhu, Y., Jonnalagadda, D., Romanow, W., Palmer, C., Siddoway, B., Rivera, R., Dutta, R., Trapp, B. D., & Chun, J. (2022). Single-nucleus RNA-seq of normal-appearing brain regions in relapsing-remitting vs. secondary progressive multiple sclerosis: Implications for the efficacy of fingolimod. Frontiers in Cellular Neuroscience, 16, 918041. doi:10.3389/fncel.2022.918041

  66. Cocco, E., Sardu, C., Spinicci, G., Musu, L., Massa, R., Frau, J., Lorefice, L., Fenu, G., Coghe, G., Massole, S., Maioli, M. A., Piras, R., Melis, M., Porcu, G., Mamusa, E., Carboni, N., Contu, P., & Marrosu, M. G. (2015). Influence of treatments in multiple sclerosis disability: A cohort study. Multiple Sclerosis Journal, 21(4), 433–441. doi:10.1177/1352458514546788

  67. Claflin, S. B., Broadley, S., & Taylor, B. V. (2019). The effect of disease modifying therapies on disability progression in multiple sclerosis: A systematic overview of meta-analyses. Frontiers in Neurology, 9, 1150. doi:10.3389/fneur.2018.01150

  68. Thompson, A. J., Baranzini, S. E., Geurts, J., Hemmer, B., & Ciccarelli, O. (2018). Multiple sclerosis. The Lancet, 391(10130), 1622–1636. doi:10.1016/S0140-6736(18)30481-1

  69. Tuulasvaara, A., Kurdo, G., Martola, J., & Laakso, S. M. (2024). Cervical lymph node diameter reflects disease progression in multiple sclerosis. Multiple Sclerosis and Related Disorders, 84, 105496. doi:10.1016/j.msard.2024.105496

  70. Chun, J., Kihara, Y., Jonnalagadda, D., & Blaho, V. A. (2019). Fingolimod: Lessons learned and new opportunities for treating multiple sclerosis and other disorders. Annual Review of Pharmacology and Toxicology, 59(1), 149–170. doi:10.1146/annurev-pharmtox-010818-021358

  71. Pournajaf, S., Dargahi, L., Javan, M., & Pourgholami, M. H. (2022). Molecular pharmacology and novel potential therapeutic applications of fingolimod. Frontiers in Pharmacology, 13, 807639. doi:10.3389/fphar.2022.807639

  72. Kappos, L., O’Connor, P., Radue, E.-W., Polman, C., Hohlfeld, R., Selmaj, K., Ritter, S., Schlosshauer, R., Von Rosenstiel, P., Zhang-Auberson, L., & Francis, G. (2015). Long-term effects of fingolimod in multiple sclerosis: The randomized FREEDOMS extension trial. Neurology, 84(15), 1582–1591. doi:10.1212/WNL.0000000000001462

  73. Tepavčević, V., & Lubetzki, C. (2022). Oligodendrocyte progenitor cell recruitment and remyelination in multiple sclerosis: The more, the merrier? Brain, 145(12), 4178–4192. doi:10.1093/brain/awac307

  74. Bebo, B. F., Allegretta, M., Landsman, D., Zackowski, K. M., Brabazon, F., Kostich, W. A., Coetzee, T., Ng, A. V., Marrie, R. A., Monk, K. R., Bar-Or, A., & Whitacre, C. C. (2022). Pathways to cures for multiple sclerosis: A research roadmap. Multiple Sclerosis Journal, 28(3), 331–345. doi:10.1177/13524585221075990

  75. Skaper, S. D. (2019). Oligodendrocyte precursor cells as a therapeutic target for demyelinating diseases. In Progress in Brain Research, 245, 119-144. Elsevier. doi:10.1016/bs.pbr.2019.03.013

  76. Harlow, D. E., Honce, J. M., & Miravalle, A. A. (2015). Remyelination therapy in multiple sclerosis. Frontiers in Neurology, 6. doi:10.3389/fneur.2015.00257

  77. Mahad, D. H., Trapp, B. D., & Lassmann, H. (2015). Pathological mechanisms in progressive multiple sclerosis. The Lancet Neurology, 14(2), 183–193. doi:10.1016/S1474-4422(14)70256-X

  78. Mei, F., Lehmann-Horn, K., Shen, Y.-A. A., Rankin, K. A., Stebbins, K. J., Lorrain, D. S., Pekarek, K., A Sagan, S., Xiao, L., Teuscher, C., Von Büdingen, H.-C., Wess, J., Lawrence, J. J., Green, A. J., Fancy, S. P., Zamvil, S. S., & Chan, J. R. (2016). Accelerated remyelination during inflammatory demyelination prevents axonal loss and improves functional recovery. eLife, 5. doi:10.7554/eLife.18246

  79. Najm, F. J., Madhavan, M., Zaremba, A., Shick, E., Karl, R. T., Factor, D. C., Miller, T. E., Nevin, Z. S., Kantor, C., Sargent, A., Quick, K. L., Schlatzer, D. M., Tang, H., Papoian, R., Brimacombe, K. R., Shen, M., Boxer, M. B., Jadhav, A., Robinson, A. P., Podojil, J. R., Miller, S. D., Miller, R. H., & Tesar, P. J. (2015). Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo. Nature, 522(7555), 216–220. doi:10.1038/nature14335

  80. Su, X., Tang, W., Luan, Z., Yang, Y., Wang, Z., Zhang, Y., Wang, Q., Suo, L., Huang, Z., Wang, X., & Yuan, H. (2018). Protective effect of miconazole on rat myelin sheaths following premature infant cerebral white matter injury. Experimental and Therapeutic Medicine. doi:10.3892/etm.2018.5717

  81. Yao, X., Su, T., & Verkman, A. S. (2016). Clobetasol promotes remyelination in a mouse model of neuromyelitis optica. Acta Neuropathologica Communications, 4(1), 42. doi:10.1186/s40478-016-0309-4

  82. Chataway, J., Williams, T., Li, V., Marrie, R. A., Ontaneda, D., & Fox, R. J. (2024). Clinical trials for progressive multiple sclerosis: Progress, new lessons learned, and remaining challenges. The Lancet Neurology, 23(3), 277–301. doi:10.1016/S1474-4422(24)00027-9

Previous
Previous

From Club to Clinic: The Treatment of PTSD with MDMA

Next
Next

To Fear or Not to Fear: Exploring Fear Through the Lens of Urbach-Wiethe Disease